循「次」漸進

~ 利用次方導成公式

研究動機

在練習資優班甄選考古題時,有一題數學題如下圖(A),此題目如果利用繪圖或是一般算法都是非常複雜及高深的,本組想找出只需要利用一些簡易之方法來討論出答案,所以本組就以這個為研究主題。

A-4. 空間中7個平面,最多能將此空間分割為幾個區塊。

圖(A)取自台中一中97學年度數理資優鑑定試卷

問題探討

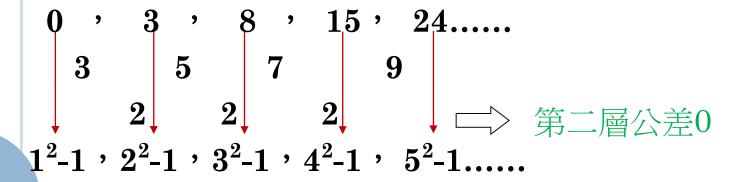
- ①基本類型的數列求出第n項之規律
- ②常見的例子並加以推導
- ③三角形經等分點切割後的個數總和之規律
- 4空間中以平面分割最多幾個區塊之規律

問題① 基本類型的數列求出第n項之規律

1.從數列各項中取公差,直到取出的公差為0

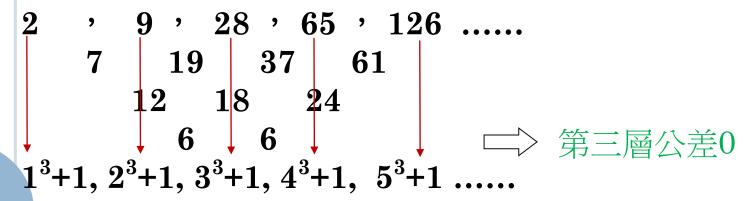
第n項為n+1

2.從數列各項中取公差,直到取出的公差為0



第n項為 n^2-1

3.從數列各項中取公差,直到取出的公差為0



第n項為 n^3+1

4.從數列各項中取公差,直到取出的公差為0

第n項為 $2n^2$ -1

問題②常見的例子並加以推導

例題1

數列2,4,6,8,10,12,14,16,18,20.....以金字塔方式呈現

2

4 6

8 10 12 求第n層第k數的公式?

14 16 18 20

(1)一般的解法:(利用等差觀念)

2,4,6,8,10......成等差數列,且公差為2

第n層第k數共有1+2+3.....+(n-1)+k項

$$=\frac{[1+(n-1)]\times(n-1)}{2}+k=\frac{n^2-n+2k}{2}$$

第
$$n$$
層第k數 $2+\left(\frac{n^2-n+2k}{2}-1\right)\times 2=n^2-n+2k$

(2)利用次方的解法

取第n層第一數

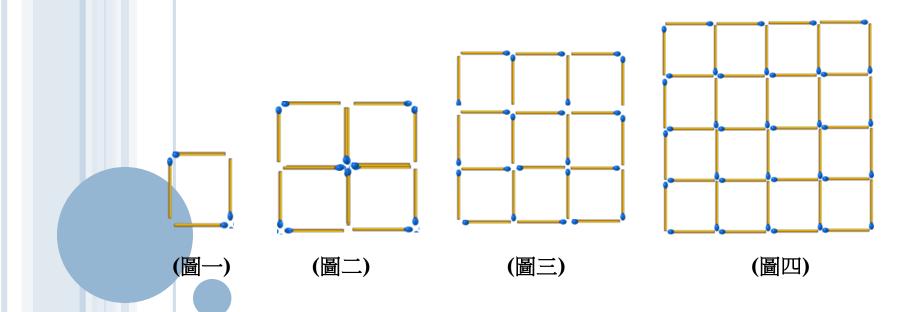
第
$$n$$
 層第一數: $n^2+1+(n-1)\times(-1)=n^2-n+2$

第
$$n$$
層第 K 數: $n^2 - n + 2 + (k - 1) \times 2$

$$= n^2 - n + 2k$$

例題2

求圖(n)共用了幾根火柴棒?

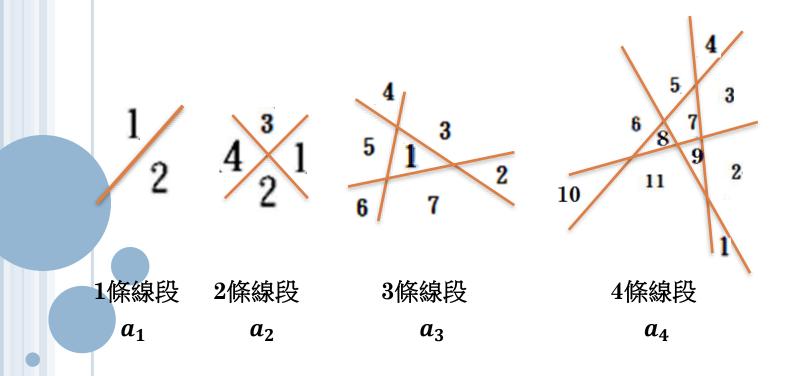


(1)一般的解法:(利用遞迴關係) $a_1=4$ $a_2=a_1+8$ $a_3=a_2+12$ $a_4=a_3+16$ $a_n=a_{n-1}+4n$ $a_n=4+8+12...+4n=2n^2+n$ $a_n=\frac{(4+4n)\times n}{2}=(2n+2)\times n$

(2)利用次方的解法 , 12 , 24 , 40 12 16 $1^{2}+3$, $2^{2}+8$, $3^{2}+15$, $4^{2}+24$. 此時發現,並無明顯規律,須把3,8,15, 24,取出再討論 , 8 , 15 , 24...... 2 2 1^2+2 , 2^2+4 , 3^2+6 , 4^2+8 由上述兩個數列結合可得: 第n項= $2n^2+2+(n-1)\times 2=2n^2+2n$

例題三

在平面中, n條線段作多可將平 面分割成多少區域?



(1) 一般的解法:(利用遞迴關係)



$$a_1$$
有2(塊)
 a_2 有 a_1 + 2
 a_3 有 a_2 + 3

$$a_4$$
有 a_3+4

• • • • •

$$a_n = a_{n-1} + n = (2 + 2 + 3 + \dots + n)$$

$$a_{n} = 2 + (2 + 3 + \dots + n)$$

$$= 2 + \frac{(2+n)(n-1)}{2}$$

$$= 2 + \frac{n^{2}+n-2}{2}$$

$$= \frac{n^{2}+n+2}{2}$$

(2)利用次方的解法:

$$n^{2} + 1 + [(-1)+(-2)+...+-(n-1)] = n^{2} + 1$$

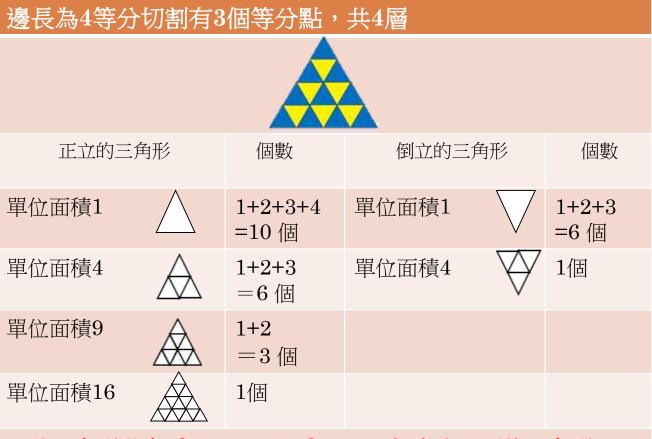
$$= \frac{[-1+-(n+1)]\times(n-1)}{2}$$

$$= \frac{n^{2}+n+2}{2}$$

例題四

探討三角形經等分點切割後的個數總和之規律

1. 偶數層



→此三角形共有 4^2 +(1+2+3)+ 2^2 +1=27個大小不同的三角形。

由上述可推論,偶數層三角形中,大小不同的三角形個數總和為奇數層疊加至該層數的值,加上偶數層之層數平方相加。

表(一) 延伸推廣其他偶數層

2層	4層	6層	8層	10層
2^2	4 ²	6 ²	8 ²	10^2
1	1+2+3	1+2+3+4+5	1+2+3+4++7	1+2+3+4++9
	2^2	4 ²	6 ²	8 ²
	1	1+2+3	1+2+3+4+5	1+2+3+4++7
		2^2	4 ²	6 ²
		1	1+2+3	1+2+3+4+5
			2^2	4 ²
			1	1+2+3
				2 ²
				1
共5個	共27個	共78個	共170個	共315個

因此由上表(一)推導第n個偶數(2n層)共有幾個之通式

(1)一般的解法:(利用∑總和公式)

總和=
$$[2^2 + 4^2 + 6^2 + \dots + (2n)^2] + 1 + 6 + 15 + \dots + [1 + 2 + 3 + \dots + (2n - 1)]$$
① $2^2 + 4^2 + \dots + (2n)^2 = 2^2(1^2 + 2^2 + \dots + n^2)$

$$= 4 \times \sum_{k=1}^{n} k^2$$

②
$$a_1 + a_2 ... + a_n = \sum_{k=1}^{n} 2k^2 - k = 2\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k$$

① +②= 6
$$\sum_{k=1}^{n} k^2 - \sum_{k=1}^{n} k = 6 \times \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)}{2}$$

$$= \frac{4n^3 + 5n^2 + n}{2}$$

(2)利用次方的解法 5, 27, 78, 170, 315..... 22 | 51 | 92 145 4112 12 $1^{3}+4$, $2^{3}+19$, $3^{3}+51$, $4^{3}+106$, $5^{3}+190$ 此時發現,並無明顯規律,把4,19,51,106,190...取出再討 4 , 19 , 51 , 106 , 190..... 32 + 55 $15 \quad \Box$ 84 23 $1^{3}+3$, $2^{3}+11$, $3^{3}+24$, $4^{3}+42$, $5^{3}+65$ 此時發現,並無明顯規律,把3,11,24,42,65...取出再討論 11 , 24 , 42 , 65..... 13 | 18 | 23 $1^{2}+2$, $2^{2}+7$, $3^{2}+15$, $4^{2}+26$, $5^{2}+30$ 此時發現,並無明顯規律,把2,7,15,26,40.....取出再討論

$$2$$
 , 7 , 15 , 26 , 40
 $1^{2}+1$, $2^{2}+3$, $3^{2}+6$, $4^{2}+10$, $5^{2}+15$
 1 , $1+2$, $1+2+3$, $1+2+3+4$, $1+2+3+4+5$
第n個偶數($2n$ 屬)之公式:
 $2n^{3}+2n^{2}+(1+2+3+\cdots+n)$
 $=2n^{3}+2n^{2}+\frac{(1+n)n}{2}=\frac{4n^{3}+5n^{2}+n}{2}$

2.奇數層

2. 邊長為5等分切割有4個等分點,共5層

正立的三角形		個數	倒立的	三角形	個數
單位面積 1		1+2+3+4+5 =15個	單位面積		1+2+3+4 =10個
單位面積 4		1+2+3+4 =10個	單位面積 4		1+2 =3個
單位面積		1+2+3 =6個			
單位面積 25		1+2 =3個			
單位面積 36		1個			

此三角形共有 5^2 + $(1+2+3+4)+3^2$ + $(1+2)+1^2$ =48個大小不同的三角形。

由上述可推論,奇數層三角形中,大小不同的三角形個數總和為奇數層之層數平方相加,加上偶數層之疊加至該層數的值。

表(二) 延伸推廣其他奇數層

1層	3層	5層	7層	9層
1 ²	3^2	5 ²	7 ²	9 ²
	1+2	1+2+3+4	1+2+3++6	1+2+3++8
	1 ²	3^2	5^2	7 ²
		1+2	1+2+3+4	1+2+3++6
		1 ²	3^2	5^2
			1+2	1+2+3+4
			12	3^2
				1+2
				1^2
共1個	共13個	共48個	共118個	共235個

總和=
$$(1^2+3^2+5^2...+(2n-1^2))$$
 +3+10+21......

①
$$1^2+3^2...+(2n-1)^2=(1^2+2^2...+(2n-1^2))-(2^2+4^2...+(2n-2)^2)$$

$$= \sum_{k=1}^{2n-1} k^2 - 2^2 \left(1^2 + 2^2 \dots + (n-1)^2 \right)$$

$$= \sum_{k=1}^{2n-1} k^2 - 4 \times \sum_{k=1}^{n-1} k^2$$

$$a_1 + a_2 \dots + a_{n-1} = \sum_{k=1}^{n-1} (2k^2 + k) = 2\sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

$$a_1 = 3$$
 $a_2 = 3 + 7$

$$2a_3 = 3 + 7 + 11$$
 $a_k = 3 + 7 + 11 \dots + (4k-1) = \frac{(3+4k-1)\times k}{2} = 2k^2 + k$

$$a_1 + a_2 \dots + a_{n-1} = \sum_{k=1}^{n-1} (2k^2 + k) = 2 \sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

$$= \sum_{k=1}^{2n-1} k^2 - 2 \sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

$$= \sum_{k=1}^{2n-1} k^2 - 2 \sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k$$

$$= \frac{(2n-1)(2n-1+1)[2(2n-1)]}{6} - 2 \times \frac{(n-1)(n-1+1)[2(n-1)+1]}{6} + \frac{(n-1)[(n-1)+1]}{2}$$

$$\frac{4n^3-n^2-n^2}{2}$$

(2)利用次方的解法

$$1^{3}+0$$
, $2^{3}+5$, $3^{3}+21$, $4^{3}+54$, $5^{3}+110...$

此時發現,並無明顯規律,把0,5,21,54,110...

取出再討論

$$\begin{bmatrix} 0 & , & 5 & , & 21 & , & 54 & , & 110 \dots \\ 5 & 16 & & 33 & & 56 \\ 11 & 17 & & 23 & & & \\ 6 & & 6 & & & & \\ 1^3 - 1 & , & 2^3 - 3 & , & 3^3 - 6 & , & 4^3 - 10 & , & 5^3 - 15 \dots \end{bmatrix}$$

第n個奇數
$$(2n-1$$
層)之公式: $2n^3-(1+2+...+n)=2n^3-\frac{(1+n)n}{2}$

$$=\frac{4n^3-n^2-n}{2}$$

(四)探討空間中以平面分割最多區塊之規律 1.一般的解法

				-
刀數	1	2	3	4
平面中	2	4	7	11
立體中	2	4	8	15
平面中		立體中		
a ₁ =2		a ₁ =2		
$a_2 = a_1 + 2$		$a_2 = a_1 + a_2$	$\frac{1^2+1+2}{2}$	
$a_3 = a_2 + 3$		$a_3 = a_2 + \frac{1}{2}$	$\frac{2^2+2+2}{2}$	
$a_4 = a_3 + 4$		$a_4 = a_3 + \frac{1}{2}$	$\frac{3^2+3+2}{2}$	
$a_n = a_{n-1} + n$		$a_n = a_{n-1}$	$+\frac{(n-1)^2+}{2}$	$\frac{(n-1)+2}{2}$
$a_n = 2 + (2 + 3 \dots + n)$		$a_n = 2 + \frac{1}{2}$	$1^2 + 2^2 + \dots + ($	$(n-1)^2$]+
		1+2++	$\frac{(n-1)}{}$	1)×2 2
$=2+\frac{(2+n)(n-1)}{2}=2+\frac{n^2+n^2}{2}$	$\frac{n-2}{2} = \frac{n^2+n+2}{2}$	$=\frac{n^3+5n-6}{6}$	<u>+6</u>	

2.利用次方的解法:

平面數	0	1	2	3	4	5	6	7
區塊數	1	2	4	8	15	26	42	64

$$(-5)\times 0$$
, $(-5)\times 1$, $(-5)\times 3$, $(-5)\times 6$, $(-5)\times 10$, $(-5)\times 15$, $(-5)\times 21$
0 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 1+2+3+4+5+6

利用遞迴關係可得

$$a_1=1+(-5)\times 0$$
 $a_2=a_1+(-5)\times 1$ $a_3=a_2+(-5)\times (1+2)$ $a_4=a_3+(-5)\times (1+2+3)$

$$a_n = a_{n-1} + (-5) \times [1 + 2 + 3 + ... + (n-1)]$$

$$a_n = 1 + (-5) \times \sum_{k=1}^{n-1} (1 + 2 + 3 + \dots + k)$$

$$=1+(-5)\times\sum_{k=1}^{n-1}\frac{k(k+1)}{2}$$

$$=1+(-5)\times\frac{1}{2}\times\frac{n(n-1)(n+1)}{3}$$

$$-5n^3+5n+6$$

總結上述可的n個平面數最多可切割的區域:

$$n^3 + \frac{-5n^3 + 5n + 6}{6} = \frac{n^3 + 5n + 6}{6}$$

Thank you 感謝教授的聆聽 敬請指教

研究進度表

時間工作	8/20~ 9/3	9/4~ 9/17	9/18~ 10/1	10/2~ 10/15	10/16~ 11/9	11/10~ 11/25	11/26~ 12/10
擬定正式計畫及 研究問題							
尋找資源							
彙整相關文獻							
資料分析							
提出研究成果							
評鑑與檢討							
累積進度百分比	15%	30%	45%	50%	60%	80%	100%