

研究動機與設計構想

1. 2. 3· 4·

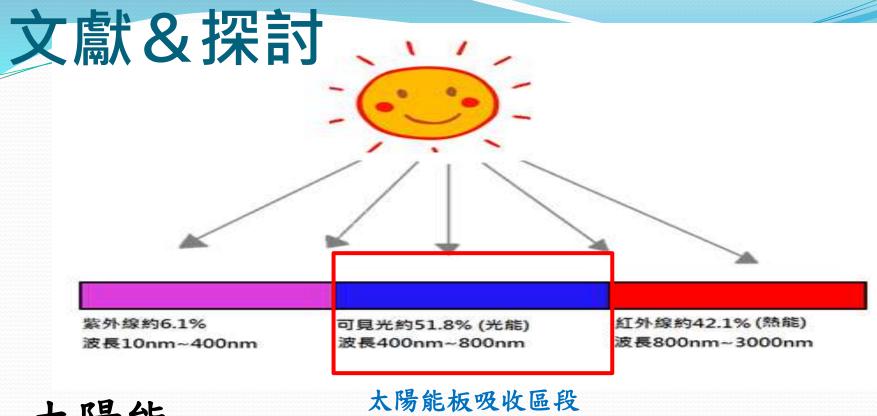
探討新興 能源使用 方法 探討太陽 與地球之 間關係 組裝硬體 設計迴路 親身體驗 瞭解綠能 才能善加 應用

研究流程

初步構想

- 選擇主題
- 擬訂計畫

前導研究


- 探訪家鄉太陽 能發電廠
- 探討地球與太陽之間交互關係
- 認識太陽能晶 片種類
- 初步討論

正式研究

- 探討影響太陽 能板發電量的 因素
- · 硬體組裝探 討及設計
- · DIY可折疊式太 陽能板實作

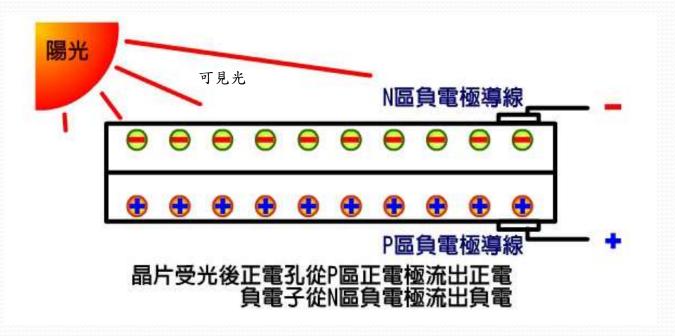
撰寫結果

- ・遭遇困難
- ・解決問題
- 未來展望
- 研究心得

太陽能

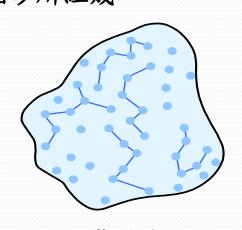
太陽能就是地球直接接收的太陽輻射能。它可以直接或間接提供巨大的能量,是一種乾淨方便取得的綠色能源。

太陽光是由連續變化不同波長的光線所混合而成,大致分為紫外線、可見光跟紅外線三大光譜區段。


太陽能板主要吸收可見光區段的光能轉換為電能

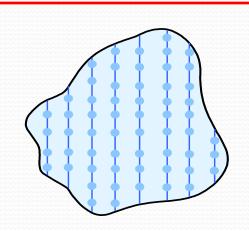
太陽能板

其發電原理是將太陽光照射在太陽能板上

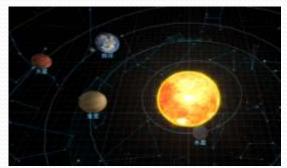

同時分離電子與電洞形成壓降產生電流,再經由導線傳輸供

給負載。

太陽能晶片種類


太陽能晶矽分為非晶矽、多晶矽及單晶矽。非晶矽:矽原子沒有規則的排列;單晶矽:組成原子呈有規則的排列;多晶矽:多個不同排列方向的單晶矽所組成。

非晶矽 轉換效率8%-15%


多晶矽 轉換效率14%-20%

單晶矽 轉換效率16%-22%

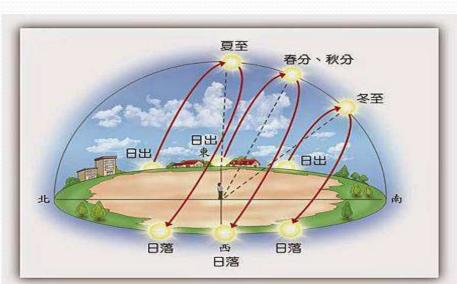
單晶指叉式 轉換效率23%-25%

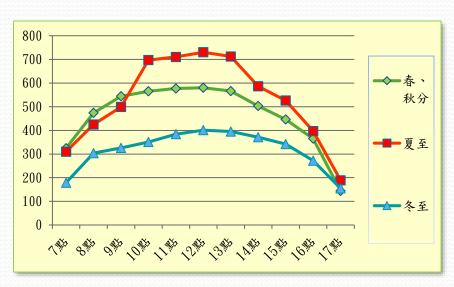
地球與太陽之間交互關係

使用模擬器APP觀察 天球運行變化

使用平行光觀察春、夏、秋、冬入射角變化

配合座標觀察法進行認知





製作半天球,藉此可從天球之角度觀察太陽四季變化之方向角、仰角,並記錄四季入射角變化、模擬光照度的變化情形

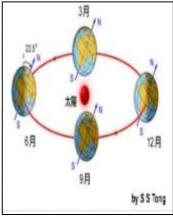
地球與太陽之間交互關係

半天球模擬四季太陽光照量日變化圖

當時間越接近正午時分日照量越大,反之則越小。四季照度量依序為夏至>春秋分>冬至。

夏至七點到九點的觀測值不符合此推論,其可能的原因應為光源未對準照度計或者是操作者抖動的人為因素。

目的:使用市售太陽能板進行四季最佳角度模擬測試,用以觀察一日各傾角電壓、電流之變化情形



由結果可以發現當太陽能板與入射太陽光線呈現90度時,可以產生最大發電量。且發電量也會隨著照度量遞增而隨著增加。

實驗二

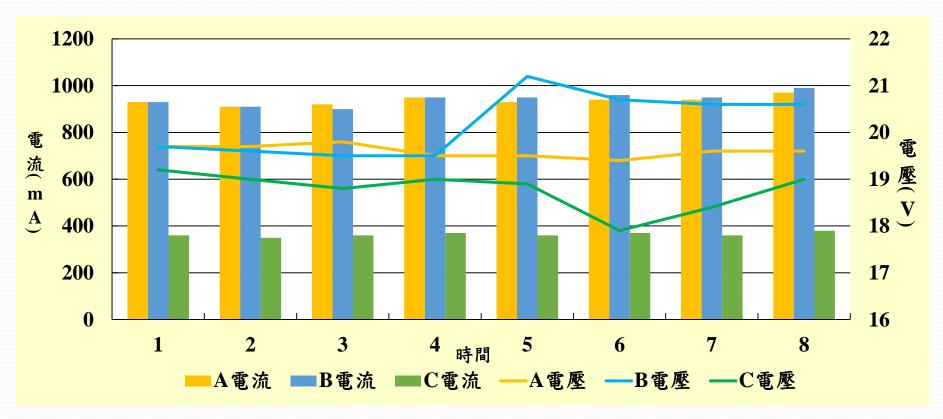
溫度和灰塵對太陽能板輸出功率的影響

將三塊太陽能板分成三組:

A 正常對照組:不做任何變因的原始太陽能板

B 中途冷卻組:實驗中途進行潑水冷卻(於實驗第5分鐘 實行)

C 積塵組:將細沙均勻塗布在太陽能板上



潑水冷卻

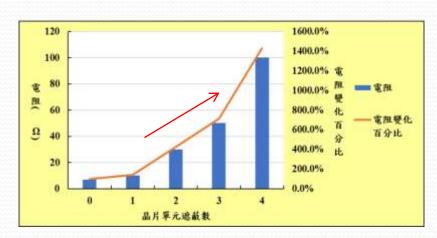
細沙塗佈

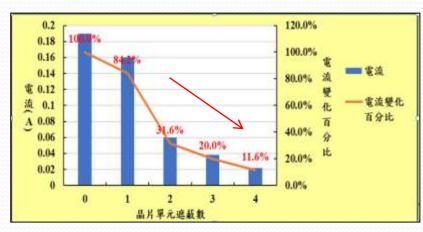
實驗 温度和灰塵對太陽能板輸出功率的影響

- *冷卻對照組B的輸出電流因潑水冷卻,而有些微的上揚。
- *積塵對照組C的輸出電流因撒沙子於模板上,致使模板不易散熱,又受到嚴重的污漬,導致輸出電流大幅下降。
- *由測試結果得知:溫度和灰塵(污漬)都是影響太陽能板輸出功率的因素。

實驗 二 太陽能板遮蔭對輸出功率的影響

利用不透光紙張依 序遮蔽0~4片太陽能 晶片單元




使用三用電表測試並記錄其電阻、電壓及電流數值。

實驗三 市售太陽能板遮蔭對輸出功率的影響

遮蔽情形	電阻	電壓	電流(A)	照度
	(Ω)	(V)		(LUX)
0%	7	18.7	0.19	20000
1單元(1晶片	10 小	18.7	0.16 大	20000
2單元(2晶片	30	18.4	0.06	20000
)				
3單元(3晶片	50	18.1	0.038	20000
)			V	
4單元(4晶片	100 大	17.7	0.022	20000
)				

晶片遮蔽單元數越來越高時,所產生的電阻值 急遽上升,當太陽能板的電阻上升時其相對的 輸出電流下降。由此可證明遮蔭面積與輸出功 率成反比。

歐姆定律

電阻值變化

V=I*R

電阻(Ω)串聯 $R=R_1+R_2+R_3+R_4+...$

P=I*V

探訪家鄉陣列式太陽能光電廠

優點

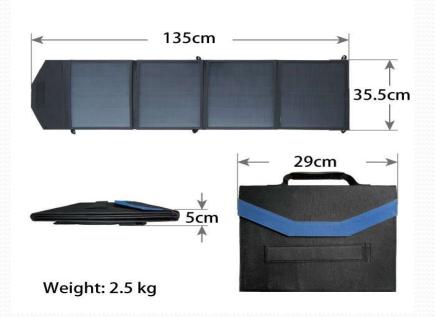
目前最盛行的太陽能轉換方式 可以將光能直接轉換為電能。 具備遮蔭迴路發電過程環保, 不產生溫室氣體。

缺點

佔用面積龐大,需要有足夠的 空間裝設太陽能面板,無法攜 帶。

彰濱太陽能光電廠

認識市售折疊式太陽能板


憂點

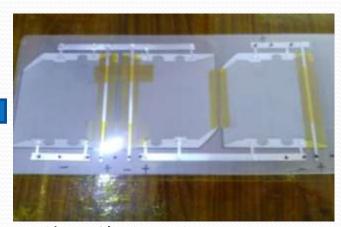
目前流行的太陽能攜帶方式, 發電過程環保,空間利用方便 不產生溫室氣體。

缺點

屬低放應用,較易產生遮蔭現象,當局部遮蔭時,功率將大幅衰退。

優點二合

DIY可摺疊式太陽能板


將焊線剪成約1cm長度

晶片兩極使用焊帶焊接引出

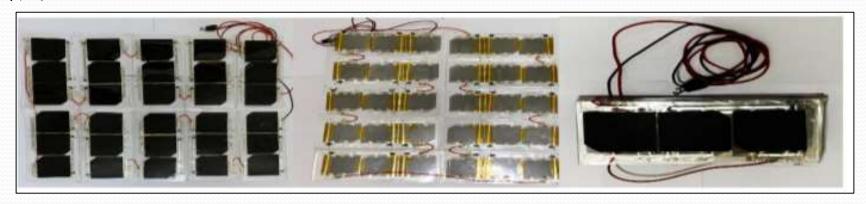
晶片進行串接並設計迴路

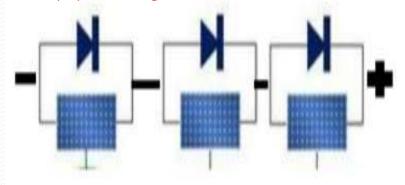
用簽字筆作正負極標示

DIY可摺疊式太陽能板

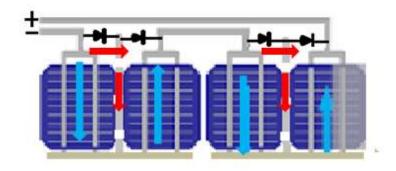
在標示正負極處打洞

用護貝機護貝

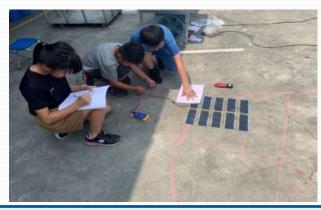

使用PET膠帶進行間距黏貼

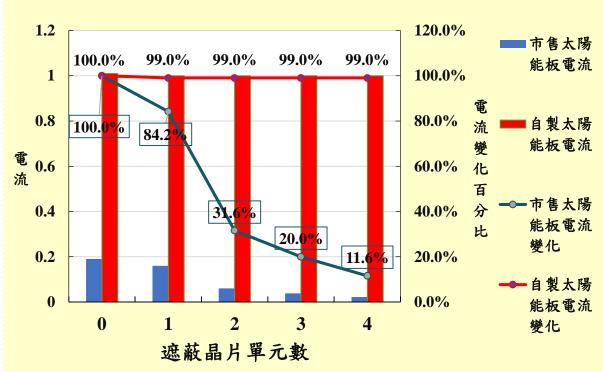

打洞處進入串接與二極體焊接

DIY可摺疊式太陽能板


成品:

- 1. 一般市售太陽能板遮蔭 迴路配置:
- 一模組配置一迴路。




2. DIY多迴路系統 遮蔭迴路配置: 一塊晶片一個迴路

DIY太陽能板與市售太陽能板 做遮蔭測試並觀察電流變化

結果發現: 若有遮蔭或模組受傷情況發生時,**多迴路系統會對遮蔭或受傷模組重新調配轉向**。由上表可知:受遮蔭的多迴路系統可取得較高的電流。市售太陽能板在沒有多迴路防遮蔭系統的情況下,因串聯時電流相同(串聯電流 $I=I_1=I_2=I_n$),整串太陽能板的發電量將損失9成以上;而有裝防遮蔭的多迴路太陽能板,將損失限制於受遮蔭的失效面板,避免發電功率的下降。

遭遇困難及解決方式

焊接 太陽 能板

遮蔭問題 迴路設計 完成多迴路 系統

晶片焊接距離不一 致·導致無法摺疊。

評鑑與討論

因台灣位於北緯23.5°, 四季陽光照射量大小: 夏至 > 春、秋分 > 冬至

照度、傾角、溫度、 灰塵,都會影響太 陽能板輸出功率。

遮蔭時電阻提升、電流下降,可知:**電阻和電**流呈反比。

Thanks for your attention...