

逃避,原地踏步!

研究動機

14. 已知 x 為實數,若 f(x) = |x-1| + |2x-1| + |3x-1| + + |9x-1| + |10x-1|,當 x = a 時, f(x) 有最小

值為 m, 試求序對 (a, m) = _____。

找資料 有疑問! 研究

14. 已知 x 為實數,若 f(x) = |x-1| + |2x-1| + |3x-1| + + |9x-1| + |10x-1|,當 x = a 時, f(x) 有最小 值為 m,試求序對 $(a, m) = _______。$

轉換一研究題目

型態一: $f(x) = |x-1| + |x-2| + |x-3| + \cdots + |x-n|$

型態二: $f(x) = |x-1| + 2|x-2| + 3|x-3| + \cdots + n|x-n|$

則 x = ? 時, f(x) 有最小值(極值)。

→ 比較好研究!

B. 研究問題:

$$f(x) = |x - 1| + 2|x - 2| + 3|x - 3| + \dots + n|x - n|$$

- 1. x = ? 時,f(x) 有最小值(極值)。
- 2. n = ? 時,f(x) 發生最小值(極值)之 x 值為一點(尖的)。
- 3. n = ? 時,f(x) 發生最小值(極值)之 x 值為一區間(水平的)
- 4. 若 n ≤ 100000, f(x) 發生最小值(極值)之 x 值為一區間 (水平的)的 n 值有幾個?

研究問題

- 5. 若 f(x) 發生最小值(極值)之 x 值為一區間, n 是否有規則?
- 6. 承上, 若n有規則,規則是什麼?
- 7. 遞迴數列的遞迴關係表示是唯一的嗎?
- 8. 如何求遞迴數列 an 之「一般項」?
- 9. 此種遞迴數列有何特別之處嗎?
- 10. f(x) 之函數圖形是否可以分類?

$$f(x) = |x-1| + |x-2| + |x-3|$$
,
則 $x = ?$ 時, $f(x)$ 有最小值(極值)。

▶ 代數分析:

- (4) <math> $3 ≤ x <math> \Rightarrow f(x) = |x 1| + |x 2| + |x 3| = 3x 6$ $\Rightarrow f(x) ≥ 3$, 3 ≤ x

由 (1) (2) (3) (4) 得知 = $f(x) \ge 2$, $\forall x \in \mathbb{R}$, 且 f(2) = 2

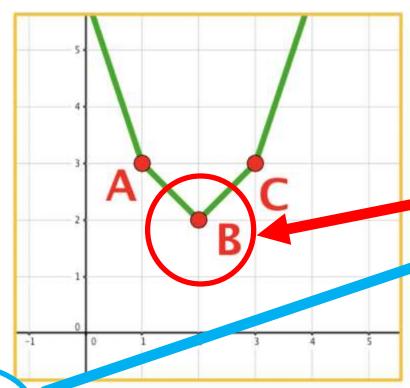
最小值

$$f(x) = |x-1| + |x-2| + |x-3|$$
,
則 $x = ?$ 時, $f(x)$ 有最小值(極值)。

▶ 幾何圖形分析:

GGB 程式軟體

$$x = 1, 2, 3$$
 ⇒中位數為 2



最小值

結論: 當 x = 2時, f(2) = 2 為最小值(極值)。

f(x) 發生最小值(極值)之x 值為一點(尖的)。

f(x) = |x-1| + |x-2| + |x-3| + |x-4|, 則 x = ? 時, f(x) 有最小值(極值)。

▶ 代數分析:

(4)
$$\exists 3 \le x < 4 \implies f(x) = |x - 1| + |x - 2| + |x - 3| + |x - 4|$$

= $2x - 2 \implies 6 > f(x) \ge 4$, $3 \le x < 4$

由(1)(2)(3)(4)(5)得知 ⇒ $f(x) \ge 4$ ∀ $x \in \mathbb{R}$

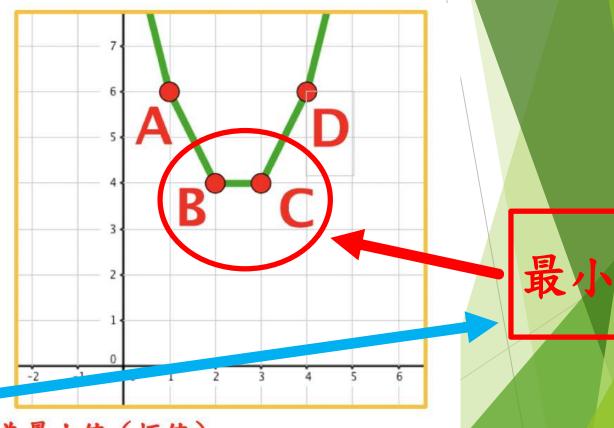
最小值

$$f(x) = |x-1| + |x-2| + |x-3| + |x-4|$$
,則 $x = ?$ 時, $f(x)$ 有最小值(極值)。

▶ 幾何圖形分析:GGB 程式軟體

$$x = 1, 2, 3, 4$$

$$\Rightarrow 中位數為 2 及 3 之間 \circ$$



f(x) 發生最小值(極值)之x 值為一區間(水平的)。

Note:

◆ 若f(x) 在「一點」發生最小值 \Rightarrow 稱f(x)之極值是「尖的」。

◆ 若f(x) 在「一區間」發生最小值 ⇒ 稱f(x)極值是「水平的」。

★推論 1:
$$f(x) = |x-1| + |x-2| + |x-3| + \dots + |x-n|$$

$$n = (2k+1) \Rightarrow x = \frac{1+(2k+1)}{2} = k+1$$
時, $f(x)$ 有最小值(尖的)。

★推論 2:
$$f(x) = |x-1| + |x-2| + |x-3| + \dots + |x-n|$$

$$n \neq 2k \Rightarrow k \leq x \leq k+1$$
時, $f(x)$ 有最小值(水平的)。

x為中位數 時,f(x) 有最小值 (極值)。

研究題目

型態二:

$$f(x) = |x-1| + 2|x-2| + 3|x-3| + \cdots + n|x-n|$$

則 x = ?時, f(x)有最小值(極值)。

奇異點:

- f(x) = |x-1| + 2|x-2| ,則 x = ? 時, f(x) 有最小值(極值)。
 - ▶ 代數分析:

 - (3) $£ 2 ≤ <math> x \Rightarrow f(x) = |x 1| + 2|x 2| = 3x 5$ ⇒ f(x) ≥ 1 , 2 ≤ <math> x
 - 由 (1) (2) (3) 得知 = $f(x) \ge 1$, $\forall x \in \mathbb{R}$, 且 f(2) = 1

最小值

$$f(x) = |x-1| + 2|x-2|$$
 ,則 $x = ?$ 時, $f(x)$ 有最小值(極值)。

▶ 幾何圖形分析:GGB 程式軟體

$$x = 1, 2, 2$$

中位數為 2

結論:當x = 2,f(2) = 1為最小值 f(x) 在一點發生最小值 (尖的)。



- (1) $x < 1 \implies f(x) = |x 1| + 2|x 2| + 3|x 3| = -6x + 14$ $\implies f(x) > 8$, x < 1
- (3) $£ 2 ≤ <math> x < 3 \Rightarrow f(x) = |x 1| + 2|x 2| + 3|x 3| = 4$ ⇒ f(x) = 4 , 2 ≤ x < 3

由 (1) (2) (3) (4) 得知 =
$$f(x) \ge 4$$
, $\forall x \in \mathbb{R}$, 且 $f(x) = 4$, $2 \le x \le 3$

f(x) = |x-1| + 2|x-2| + 3|x-3|, 則 x = ?時, f(x) 有最小值 (極值)

▶ 幾何圖形分析:

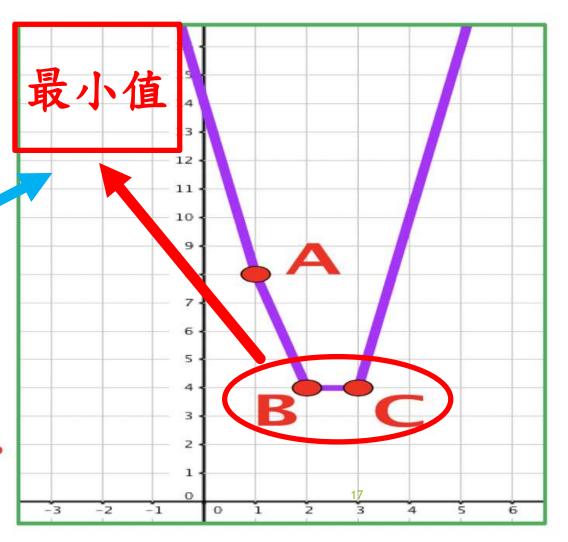
GGB 程式軟體

$$x = 1, 2, 2, 3, 3, 3$$

結論:當 $2 \le x \le 3$ 時,f(x) = 4

為最小值。

f(x)在一區間發生最小值(水平的)。



即 x為中位數 (最中間的數)時,f(x)有最小值 (極值) 8

討論8: $f(x) = |x-1| + 2|x-1| + 3|x-3| + \dots + 11|x-11|$

Sol:用上述的推論來解題:即 $x = \psi \oplus \psi$ 時,f(x) 有最小值.

$$: N = \frac{(1+11)11}{2} = 66$$
,推測 $f(x)$ 之極值為「水平的」。

▶ 幾何圖形分析:

GGB程式軟體

$$f(8) = 146$$
 and $f(9) = 152$

右圖最低點也是「尖的」!

(認知衝突1)!!!

驗 證:

n	圖形	n	圖形	n	圖形	n	圖形
1	尖的	6	尖的	11	尖的	16	尖的
2	尖的	7	尖的	12	尖的	17	尖的
3	水平的		尖的	13	尖的	18	尖的
4	尖的	9	尖的	14	尖的	19	尖的
5	尖的	10	尖的	15	尖的	20	水平的

哪裡出錯了呢!?

討論9: $f(x) = |x-1|+2|x-1|+3|x-3|+\cdots+n|x-n|$

提問1:n=?時,f(x)在一區間發生最小值(水平的)

條件 $1:N=\frac{(1+n)n}{2}=偶數 \Rightarrow 還需要什麼其他條件?$

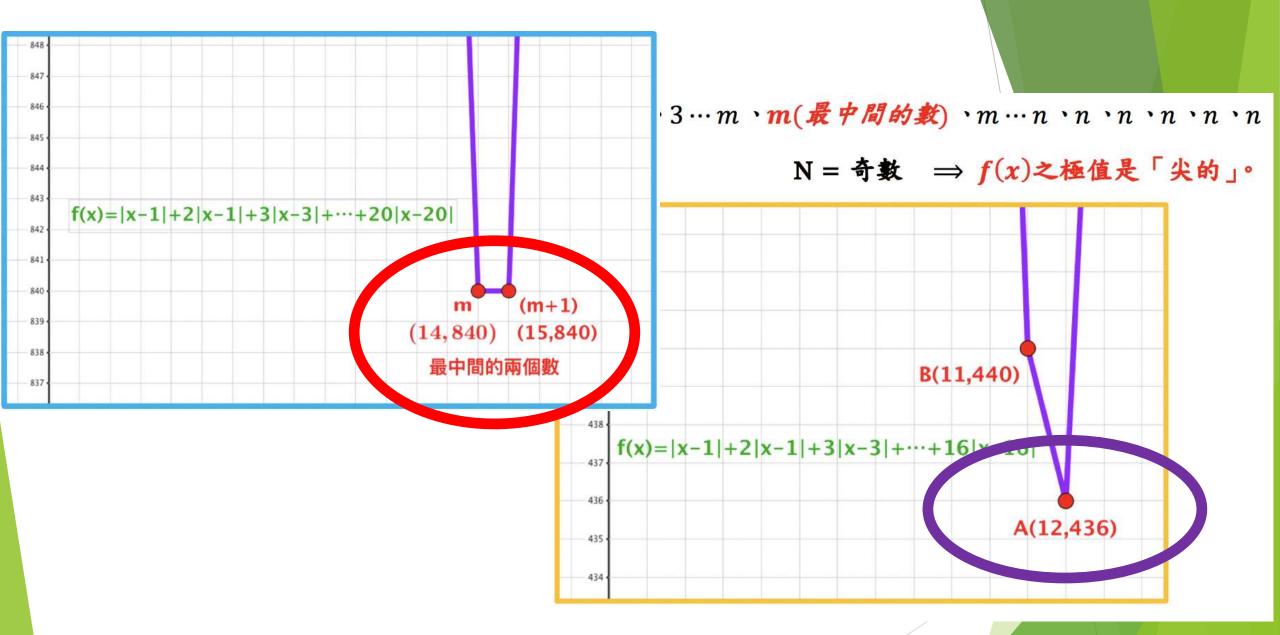
思考1:若 $f(x) = |x-1| + 2|x-1| + 3|x-3| + \cdots + n|x-n|$ 之極值是水平的!

✓ 條件1:

$$\Rightarrow N = \frac{(1+n)n}{2} = 偶數 \qquad \qquad (公式1)$$

✓ 條件2:

 $(1) x = 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot m \cdot m + 1 (最中間的兩個數)」$ $(m+1)\cdots(m+1) \cdot (m+1) \cdot (m+1)\cdots n \cdot n \cdot n \cdot n \cdot n \cdot n$ $\Rightarrow f(x) 之極值是「水平的」。$



思考2:

$$\Rightarrow 2 * \frac{(1+m)m}{2} = \frac{(1+n)n}{2}$$

$$\Rightarrow$$
 2 * (m² + m) = (n² + n) — (公式2)

★ 如何求 ★

條件2:2*(
$$m^2+m$$
) = (n^2+n)__之整數解?

1、代數分析法? —— 具難度!

2、 EXCELL —— 直接計算!

3、 觀察

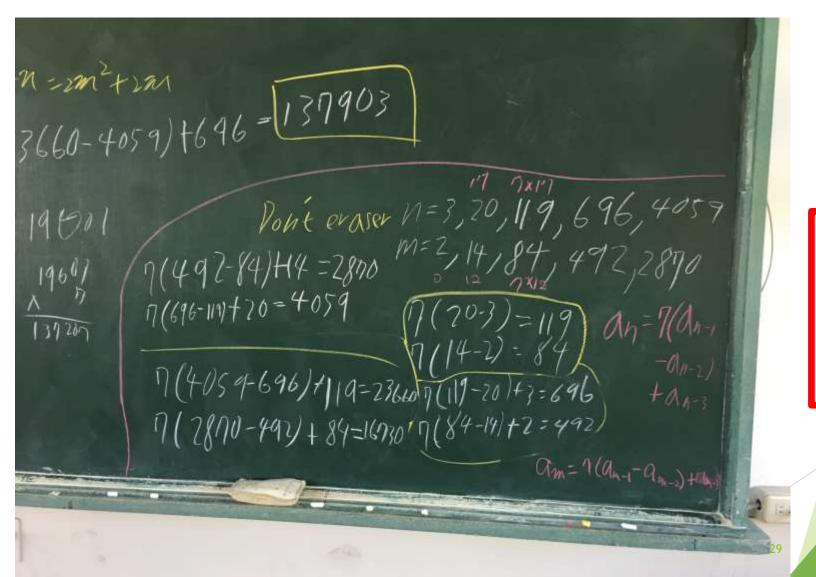
→ 臆測規則!

非常耗時! ★困難★

計算量太大! 電腦跑不動!

	Α	В	С	D	E	F	G	Н	I	J
1								m	n	
2	1	2	4	2	7	0		2	3	
3	2	6	12	6	0	1	A4	14	20	
4	3	12	24	12	1	0		84	119	
5	4	20	40	20	0	0		492	696	
6	5	30	60	30	0			2870	4059	
7	6	42	84	42	0	0				
8	7	56	112	56	0	0				
9	8	72	144	72	0	0				
10	9	90	180	90	0	0				
11	10	110	220	110	0	0				
12	11	132	264	132	0	0				
13	12	156	312	156	0	0				
14	13	182	364	182	0	0				
15	14	210	420	210	0	1	A2.			
16	15	240	480	240	0	0		租放	坐	
17	16	272	544	272	0	0			- //\ •	
18	17	306	612	306	0	0				
10	10	240	704	240	^	Λ				

★ 發現規則 ★



轉機

★ 發現規則 ★

$$a_1 = 3$$
, $a_2 = 20$

$$\Rightarrow a_2 - a_1 = 20 - 3 = 17 \Rightarrow a_3 = 119 = 7 \times 17 = 7(a_2 - a_1)$$

$$\Rightarrow a_3 - a_2 = 119 - 20 = 99$$
 and $7(a_3 - a_2) = 693$

$$\Rightarrow a_4 = 696 = 693 + 3 = 7(a_3 - a_2) + a_1$$

$$\Rightarrow a_4 - a_3 = 577 \text{ and } 7(a_4 - a_3) = 4039$$

$$\Rightarrow a_5 = 4059 = 4039 + 20 = 7(a_4 - a_3) + a_2$$

$$\Rightarrow a_6 = 7(a_5 - a_4) + a_3$$

★ 臆測規則 ★

$$\Rightarrow$$
 推測 $n = \{3 \cdot 20 \cdot 119 \cdot 696 \cdot 4059 \cdot 23660 \cdots\}$ 形成一個

$$a_1 = 3 \cdot a_2 = 20 \cdot a_3 = 119$$

遞迴數列關係:
$$a_n = 7(a_{n-1} - a_{n-2}) + a_{n-3}$$
 (公式3)

利用此遞迴關係,可求得之後的 n 值:

$$n = \{3 \cdot 20 \cdot 119 \cdot 696 \cdot 4059 \cdot 23660 \cdot 137903 \cdot 803760 \cdots \}$$

亦即 $n \leq 10000000$, f(x)之極值是「水平的」之n 值只有 8 個

極值天堂

 \mathcal{Z} $f_n(x) = |x-1| + 2|x-2| + 3|x-3| + \dots + n|x-n|$

驗證結果:

函數	$f_{119}(x)$	$f_{696}(x)$	$f_{4059}(x)$	$f_{23660}(x)$	$f_{137903}(x)$	$f_{803760}(x)$
極值	水平的	水平的	水平的	水平的	水平的	水平的

極值天堂

提問: 遞迴數列的表示法唯一嗎?

(前2項或前3項為起始值)

```
\{a_n\} = \{3 \cdot 20 \cdot 119 \cdot 696 \cdot 4059 \cdot 23660 \cdot 137903 \cdot 803760 \cdots \}
\{p_m\} = \{2 \cdot 14 \cdot 84 \cdot 492 \cdot 2870 \cdot 16730 \cdot 97512 \cdot 568344 \cdots \}
\{b_n\} = \{3 \cdot 20 \cdot 112 \cdot 000 \cdot 4059 \cdot 23660 \cdot 137903 \cdot 803760 \cdots \}
\{q_m\} = \{2 \cdot 14 \cdot 04 \cdot 132 \cdot 2870 \cdot 16730 \cdot 97512 \cdot 568344 \cdots \}
♦ 數列3: c_n = 5(c_{n-1} + c_{n-2}) - c_{n-3} + 4 r_n = 5(r_{n-1} + r_{n-2}) - r_{n-3} + 4
                                          (由2*(数列2) - 数列1)
```

 $\{c_n\} = \{3 \cdot 20 \cdot 119 \cdot 696 \cdot 4059 \cdot 23660 \cdot 137903 \cdot 803760 \cdots \}$

 $\{r_m\} = \{2 \cdot 14 \cdot 84 \cdot 492 \cdot 2870 \cdot 16730 \cdot 97512 \cdot 568344 \cdots \}$

35

由上推知
$$\{a_n\}=\{b_n\}=\{c_n\}$$
 ,起始值 $a_0=0$, $a_1=3$, $a_2=20$ $\{p_m\}=\{q_m\}=\{r_m\}$,起始值 $p_0=0$, $p_1=2$, $p_2=14$

結論:此遞迴數列之遞迴關係表示法 是不唯一的!

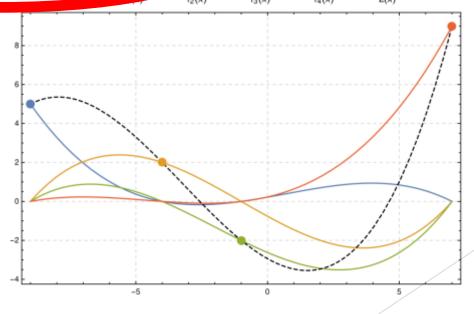
提問4:如何求遞迴數列

$$a_n = 7(a_{n-1} - a_{n-2}) + a_{n-3} - 2 - 2$$

研究方法:

利用「拉格朗日-差值多項式」來求得

遞迴數列的一般項 a_n 。



解三階遞迴數列之步驟:

列出三階遞迴 數列恆等式

以多個函數替換恆 等式的式子

利用拉格朗日法列 出函數等式

比較原先函數與插值後函 數的x平方項係數

將特徵方程式的三根代 入一般式,求得一般式

求出特徵方程式的三根

求得以特徵方程式三根和 n為未知數的一般式

遞迴數列
$$a_n = 7(a_{n-1} - a_{n-2}) + a_{n-3}$$

1. Let
$$p = 7$$
, $q = -7$, $r = 1$

2. 特徵方程式:
$$x^3 - px^2 - qx + r = 0$$

$$\alpha = 1$$
 $\beta = 3 + 2\sqrt{2}$ $\gamma = 3 - 2\sqrt{2}$

遞迴數列
$$a_n = 7(a_{n-1} - a_{n-2}) + a_{n-3}$$

利用「拉格朗日插值法」

$$f(\alpha) = R(\alpha), f(\beta) = R(\beta), f(\gamma) = R(\gamma)$$

$$R(x) = f(\alpha) \cdot \frac{(x-\beta)(x-\gamma)}{(\alpha-\beta)(\alpha-\gamma)} + f(\beta) \cdot \frac{(x-\alpha)(x-\gamma)}{(\beta-\alpha)(\beta-\gamma)} + f(\gamma) \cdot \frac{(x-\alpha)(x-\beta)}{(\gamma-\alpha)(\gamma-\beta)}$$

and
$$R(x) = a_{n-1}x^2 - (qa_{n-2} + ra_{n-3})x + ra_{n-2}$$

遞迴數列 $a_n = 7(a_{n-1} - a_{n-2}) + a_{n-3}$

4. 求得一般項:
$$a_n = A \cdot \alpha^n + B \cdot \beta^n + C \cdot \gamma^n$$

$$A = \frac{a_1 \alpha^2 + (a_2 - pa_1) + ra_0}{\alpha(\alpha - \beta)(\alpha - \gamma)}$$

$$B = \frac{a_1 \beta^2 + (a_2 - pa_1) + ra_0}{\beta(\beta - \alpha)(\beta - \gamma)}$$

$$C = \frac{a_1 \gamma^2 + (a_2 - pa_1) + ra_0}{\gamma (\gamma - \alpha)(\gamma - \beta)}$$

遞迴數列
$$a_n = 7(a_{n-1} - a_{n-2}) + a_{n-3}$$

$$\alpha = 1$$
, $\beta = 3 + 2\sqrt{2}$, $\gamma = 3 - 2\sqrt{2}$, $\beta = 7$, $q = -7$, $r = 1$

◆ 起始值:
$$a_0 = 0$$
, $a_1 = 3$, $a_2 = 20$

$$a_n = \frac{-1}{2} + \frac{1+\sqrt{2}}{4} \times (3+\sqrt{8})^n + \frac{1-\sqrt{2}}{4} \times (3-\sqrt{8})^n$$

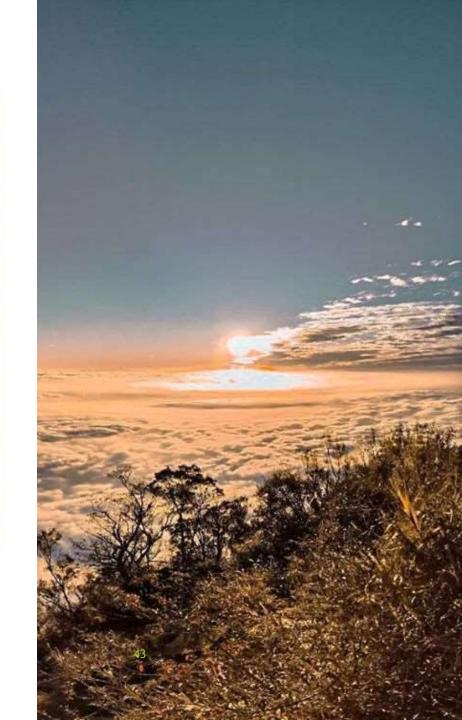
◆ 起始值:
$$p_0 = 0$$
, $p_1 = 2$, $p_2 = 14$

$$p_m = \frac{-1}{2} + \frac{2+\sqrt{2}}{8} \times (3+\sqrt{8})^m + \frac{2-\sqrt{2}}{8} \times (3-\sqrt{8})^m$$

數列驗證:

n	$a_{n=\frac{-1}{2}+\frac{1+\sqrt{2}}{4}} \times (3+\sqrt{8})^n + \frac{1-\sqrt{2}}{4} \times (3-\sqrt{8})^n$	m	$p_{m=\frac{-1}{2}+\frac{2+\sqrt{2}}{8}} \times (3+\sqrt{8})^m + \frac{2-\sqrt{2}}{8} \times (3-\sqrt{8})^m$
1	3	1	2
2	20	2	14
3	119	3	84
4	696	4	492
5	4059	5	2870
6	23660	6	16730
7	137903	7	97512
8	803760	8	568344
9	4684659	9	3312554
10	27304196	10	19306982
11	159140519	11	112529340

表示,推作的 一般項 a_n 及 p_m 是正確的!



PYTHAGOREAN TRIADS OF THE FORM X, X + 1, Z 96

Then, by solving these sin

(4)
$$p_n = 1/2 \left[(1 + \sqrt{2})^n + (1 - \sqrt{2})^n \right]$$

(4)
$$p_{n} = 1/2 \left[(1 + \sqrt{2})^{n} + (1 - \sqrt{2})^{n} \right]$$

$$q_{n} = \frac{1}{2\sqrt{2}} \left[(1 + \sqrt{2})^{n} - (1 - \sqrt{2})^{n} \right]$$

102 PYTHAGOREAN TRIADS OF THE FORM X, X + 1, Z APPENDIX A

n 1			$\underline{}^{q}_{n}$	$2q_n^{}q_{n+1}^{}$	=	{	x
1			1	4	x_1	=	3
2			2	20	x_2	=	20
3	z_1	=	5	120	\mathbf{x}_3	=	119
4			12	696	x_4	=	696
5	z_2	=	29	4060	\mathbf{x}_{5}	=	4059
6	0.5		70	23360	$\mathbf{x}_{\mathfrak{g}}$	=	23360
7	z_3	Ħ	169	137904	x_7	=	137903
8	-		408	803760	\mathbf{x}_{8}	=	803760
9	$\frac{z_4}{-}$	=	985	4684660	\mathbf{x}_{9}	=	4684659

提問5:此兩個遞迴數列有何特別之處嗎?

在找出此兩個遞迴數列的一般項後,我們想要更深入地認識了 解這兩個遞迴數列有何特別及應用之處?

於是,我們查了咨判音然孤田.

 $\{a_n\} = \{3 \cdot 20 \cdot 119 \cdot 696 \cdot 4059 \cdot 23660 \cdot 137903 \cdot 803760 \cdots \}$

剛好為近半等腰且用一用心」「我小的 成! (選長 abc 如表)

а	b	С
3	4	5
20	21	29
119	120	169
696	697	985
4059	4060	5741
23660	23661	33461
137903	137904	195025
803760	803761	1136689
4684659	4684660	6625109
27304196	27304197	38613965

 $c_n=2p_n+1$

c_n 數列的神奇之處:

在資料查詢的過程中,還發現兩點關於 $\{c_n\}$ 的神奇之處。

- (1) 2 c_n² 1 恆為完全平方數!。
 - $c_n^2 = a_n^2 + (a_n + 1)^2$ 代入 $2 c_n^2 1$
 - 得 $2c_n^2 1 = 4a_n^2 + 4a_n + 1$
 - $\Rightarrow 2R_n^2 1 = (2a_n + 1)^2$
 - (2)近乎等腰的直角三角形之斜邊所形成的數列 c_n ,竟然是馬爾可夫
 - 數(markoff numbers)的一員!。

定義:

- ◇ 若f(x) 在「一點」發生<u>最小值</u> \Rightarrow 稱f(x)之極值是「尖的」。
- ◆ 若f(x) 在「一區間」發生最小值 \Rightarrow 稱f(x)極值是「水平的」。
- ★ 結論1:4
- (-) 型態-: $f(x) = |x-1| + |x-2| + |x-3| + \cdots + |x-n|$
- Arr n = $(2k+1) \Rightarrow x = \frac{1+(2k+1)}{2} = k+1$ 時,f(x) 有最小值(尖的)。
- ▶ $n = 2k \implies k \le x \le k + 1$ 時, f(x) 有最小值(水平的)。

即 x為中位數 時,f(x) 有最小值 (極值)。

- ★ 結論2:
- (二) 型態二: $f_n(x) = |x-1| + 2|x-2| + 3|x-3| + \cdots + n|x-n|$
- f(x) 極值是「水平的」的條件:
- ✓ 條件1: $N = \frac{(1+n)n}{2} = 偶數$ ———(公式 1).
- ✓ 條件2: $2*(m^2+m)=(n^2+n)$ ———(公式2)
- ⇒ $m \le x \le m + 1$ (第 $\frac{N+1}{2}$ 個x值為m), f(x) 有最小值(水平的)。↓
- 即 x為中位數 (最中間的兩個數) 時,f(x) 有最小值 (水平的)。

★ 結論3:4

若上述之條件1或條件2,任一條件不成立,f(x)有最小值(尖的)。

- ★ 結論 4:滿足公式2之所有 n 及 m 值會形成遞迴數列 (三種遞迴關係) +
- $a_n = 7(a_{n-1} a_{n-2}) + a_{n-3} = 6a_{n-1} a_{n-2} + 2$ $= 5(a_{n-1} + a_{n-2}) a_{n-3} + 4$

起始值 $a_0 = 0$, $a_1 = 3$, $a_2 = 20$

 $\{a_n\} = \{3 \cdot 20 \cdot 119 \cdot 696 \cdot 4059 \cdot 23660 \cdot 137903 \cdot 803760 \cdots \}_{-}$

$$p_{m} = 7(p_{m-1} - p_{m-2}) + p_{m-3} = 6p_{m-1} - p_{m-2} + 2$$

$$= 5(p_{m-1} + p_{m-2}) - p_{m-3} + 4$$

起始值 $p_0 = 0$, $p_1 = 2$, $p_2 = 14$.

 $\{p_m\} = \{2 \cdot 14 \cdot 84 \cdot 492 \cdot 2870 \cdot 16730 \cdot 97512 \cdot 568344 \cdots \}$

- \bigstar 結論5:用拉格朗日差值多項式求得遞迴數列的一般項 a_n 及 $p_{m'}$
- ◆ 起始值: $a_0 = 0$, $a_1 = 3$, $a_2 = 20$

$$a_n = \frac{-1}{2} + \frac{1+\sqrt{2}}{4} \times (3+\sqrt{8})^n + \frac{1-\sqrt{2}}{4} \times (3-\sqrt{8})^{n_{\text{p}}}$$

◆ 起始值: $p_0=0$, $p_1=2$, $p_2=14$

$$p_m = \frac{-1}{2} + \frac{2 + \sqrt{2}}{8} \times (3 + \sqrt{8})^m + \frac{2 - \sqrt{2}}{8} \times (3 - \sqrt{8})^m$$

igstar 結論6:求得「近乎等腰直角三角形」斜邊遞迴數列一般項 $c_{n'}$

$$c_n = \frac{2+\sqrt{2}}{4} \times (3+\sqrt{8})^n + \frac{2-\sqrt{2}}{4} \times (3-\sqrt{8})^n \implies c_n = 2p_n + 1$$

接下來回到研究出發點之的實作題目!

14. 已知 x 為實數,若 f(x) = |x-1| + |2x-1| + |3x-1| + + |9x-1| + |10x-1|,當 x = a 時, f(x) 有最小 值為 m,試求序對 $(a, m) = _______。$

Sol:
$$x = \left\{ \frac{1}{10}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right\}$$

x值共 55 個,中位數在第 28 個 x值!↓

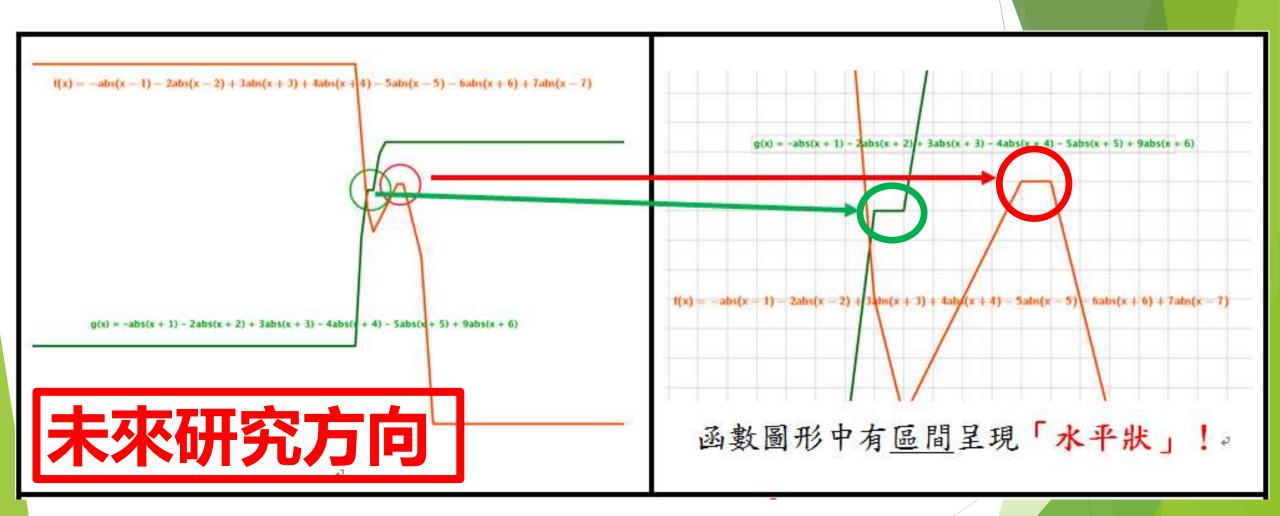
$$\Rightarrow x = \frac{1}{7} \Rightarrow f\left(\frac{1}{7}\right) = minimum ! (尖的)$$

- ★ 結論7: $F(x) = A|x-a| + B|x-b| + C|x-c| + \cdots + K|x-k|$
- 之函數圖形可以分2類! (如下圖說明)
- ▶ 係數和=A+B+C+…+K=0,則 F(x)函數圖形兩側呈水平狀。
- ▶ 係數和=A+B+C+…+K > 0 或係數和 = A+B+C+…+K < 0</p>

則 F(x)函數圖形兩側呈朝上或朝下↓

$$h(x) = -abs(x + 1) - 2abs(x + 2) + 4abs(x + 3) - 4abs(x + 4) - 5abs(x + 5) + 9abs(x + 6)$$

$$i(x) = -abs(x-1) - 3abs(x-2) + 3abs(x-3) - 4abs(x-4) - abs(x-5) + 9abs(x-6)$$



参考文獻

- 1. 106學年科學班考題。
- 2. 十二年國民基本教育課程綱要 數學領域
- 3. 科學Online 遞迴關係(一)

https://highscope.ch.ntu.edu.tw/wordpress/?p=365 74

- 4. 中華民國第58 屆中小學科學展覽會得獎作品:「金金」計較https://twsf.ntsec.gov.tw/activity/race-1/58/pdf/NPHSF2018-030417.pdf
- 5. OEIS數列查詢(1)(https://oeis.org/A000129)
 - (2)(https://oeis.org/A001652)
 - (3)(https://oeis.org/A053141)
 - (4)(https://oeis.org/A002559)
 - (5)(https://oeis.org/A001653)
- 6. 建中數理資優班『遞迴方法』講義.第二部分: 簡易遞 迴數列的解法

- 7. 用「多項式除法」求二階遞迴數列的一般項(重根與 虚根)
- 8. 以拉格朗日差值法求得三階遞迴數列的一般式
- 9. 維基百科
- (1)三次方程式 (2)特徵方程式 (3)拉格朗日差值法 (4)馬爾可夫方程
- (5)特殊直角三角形-幾乎等腰的直角三角形 (6)畢氏三元數
- 1. 馬爾可夫數
 - (1)<u>https://minortriad.com/markoff.html</u>
 - (2)<u>https://mathworld.wolfram.com/MarkovNumber.html</u>
- 10. 原始勾股三元組 http://pythagoreantriples.blogspot.com/2013/04/pts-withnear-isosceles-triangles.html
- 11. 原始勾股三元組(a, b = a + 1, c)
 https://benvitalenum3ers.wordpress.com/2016/08/28/primitive-pythagorean-triples-a-ba1-c/
- 12. Pythagorean Triads of the Form x, x+1, z Described By Recurrence Sequences.

